
ILA Berlin 2018

Presenter: Jochen Wild (DLR)

Coordinator of AFLoNext: Martin Wahlich (Airbus Operations GmbH)

AFLONEXT FINAL CONFERENCE
Active Buffet Flow Control on Wing Trailing Edge



ACTIVE BUFFET FLOW CONTROL ON 

WING TRAILING EDGE
M. Nichols, F. Sartor, J. Dandois, H. Maseland, M. Minervino, A. Ryzhov, 

V. Soudakov, P. Vrchota, S. Wallin, J. Wild, A. Seifert, D. Dlgopyat, 

A. Bennetts, S. Rolston, J. Alderman

April 2018 2



Outline

\ Motivation / Objectives

\ Benchmark of CFD Simulation Capabilities

\ Design of Mini-TED devices for Buffet Control

\ Evaluation at Aircraft Level

\ Lessons Learnt

April 2018 3



Motivation

Potential of Buffet Control
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Motivation

Potential of Buffet Control
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Objectives

Predict the performance of different control devices

Identify the most promising application (buffet control?)

Perform parametric study to find more efficient configurations

Optimisation w.r.t. a specific objective (max lift/efficiency?)
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Benchmark of CFD Simulation Capabilities

Prerequisite for design:

\ validated design environment

\ common baseline

Validation process:

\ definition of benchmark experiments for comparison

\ case studies by contributors

\ cross-comparison of results

\ derivation of lessons learnt
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Benchmark of CFD Simulation Capabilities

Benchmark Experiments used AFLoNext:

\ buffet flow control experiments conducted within the AVERT project (EU 5th 
Framework)

\ 2D airfoil experiments performed at VZLU

\ 3D half-model experiments performed at ONERA

\ selected test case

\ transonic flow with/without buffet

\ data for comparison

\ steady/unsteady pressure and aerodynamic coefficients
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Benchmark of CFD Simulation Capabilities

2D CFD simulation validation
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Benchmark of CFD Simulation Capabilities

3D CFD simulation validation
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Design of Mini-TED devices for Buffet Control

Design problem

1. Optimizations for maximum lift:   objective = Cl(a=0.9°) + Cl(a=3.4°)

2. Optimization for maximum lift-over-drag ratio (E):   objective = E(a=0.9°) + E(a=3.4°)
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Design of Mini-TED devices for Buffet Control

Optimization result
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AoA = 1.9°



*Wing deformations tend to bring CoL inboard for increased CL, but for rigid wing analysis CoL migrates 

outboard for increased CL

AviATE Tool Adapted for Buffet Study

Evaluation at Aircraft Level

Scope of assessment study

\ Wing design space investigated with AvIATE
(rapid low order methodology)

\ Single aisle use case. 

\ Wing planform constants:  sweep, thickness, 
crank

\ Wing planform variables: span, taper

\ Study limited to aerodynamic buffet onset 

\ Wing span loadings are calculated assuming 
that the Centre of Lift remains constant for  CL

range of interest*.           

\ Assumes buffet is initiated when local sectional 
Cl exceeds a specified value (function of Mach, 
sweep, thickness & design philosophy)
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Evaluation at Aircraft Level

Process methodology

\Flow control effectiveness from 2D simulations  allows Cl buffet to be increased

\Average Cl buffet and area of wing requiring buffet suppression calculated to 

determine the mass flow the system must deliver.
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Clean wing
Aircraft Without Buffet Control

(a)

(b)

(c)

Evaluation at Aircraft Level

Potential of buffet onset AFC with const. wing area
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Single aisle use case.  

Mission fuel:

“(a)” 0.3g buffet margin

“(b)” min. MTOW

“(c)” min. mission fuel 

\ 4.7% fuel saving if we can 
recover 0.15g÷0.2g margin to 
buffet



Evaluation at Aircraft Level

Buffet control mass flow requirements

\ Data received from 2D CFD simulations scaled to aircraft conditions

\ Wing planforms assessed need buffet delay up to DCl 0.15 
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CIRA flow control too effective

Example:

\ DClave buffet delay ≈ 0.08

\ SFlowControl ≈ 40m2

\ Mass flow ≈ 6.5 kg/s

\ Pressure Ratio ≈ 2.1



Point “c”

Mass Flow ≈ 7kg/s, PR ≈ 2.5

Flow Control system Mass ≈ 300kg

Flow Control Power ≈ 700kW

ΔSFC ≈ +5.5%,   ΔFuel Flow ≈ 135kg/h 
Not accounted for as the

system operates momentarily

Evaluation at Aircraft Level

Potential benefits of buffet suppression flow control

\ Mass flow & systems mass estimates integrated with AvIATE to derive mass ‘snowball’ effects

\ Accounting for system mass system reduces the fuel benefit to 4.2% for the design wing area.

\ Largest flow control benefit from small highly loaded wings

\ Benefit decreases rapidly with increased wing area

\ Benefit of high span wings largely achieved with increased wing area
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Lessons Learnt

Benchmark of CFD Simulation Capabilities

\ CFD methods capable to predict buffet onset

\ CFD methods capable to predict effect of AFC on buffet onset

\ AFloNext experience: deviations in CFD smaller than uncertainties from 
experiment

Design of Mini-TED devices for Buffet Control

\ lift increases are obtained with a smaller slot closer to the trailing edge; a 
lower mass-flow rate can be used if the jet inclination is increased beyond 
90°

\ efficiency increases are obtained with a larger slot more distant from the 
trailing edge, blowing with a lower mass-flow rate almost normally to the wing 
surface

Evaluation at Aircraft Level

\ 4.2% mission fuel reduction by extending buffet margin on single-aisle
aircraft size wing

\ fuel reduction potential decreases with wing size
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