AFLONEXT FINAL CONFERENCE

Active Buffet Flow Control on Wing Trailing Edge

2ND GENERATION ACTIVE WING ILA Berlin 2018 Presenter: Jochen Wild (DLR)

Coordinator of AFLoNext: Martin Wahlich (Airbus Operations GmbH)

AFLONext

ACTIVE BUFFET FLOW CONTROL ON WING TRAILING EDGE

M. Nichols, F. Sartor, J. Dandois, H. Maseland, M. Minervino, A. Ryzhov,V. Soudakov, P. Vrchota, S. Wallin, J. Wild, A. Seifert, D. Dlgopyat,A. Bennetts, S. Rolston, J. Alderman

- \ Motivation / Objectives
- \ Benchmark of CFD Simulation Capabilities
- \ Design of Mini-TED devices for Buffet Control
- \ Evaluation at Aircraft Level
- \ Lessons Learnt

Potential of Buffet Control

Potential of Buffet Control

Predict the performance of different control devices

Identify the most promising application (buffet control?)

Perform parametric study to find more efficient configurations

Optimisation w.r.t. a specific objective (max lift/efficiency?)

Prerequisite for design:

validated design environmentcommon baseline

Validation process:

\ definition of benchmark experiments for comparison
\ case studies by contributors
\ cross-comparison of results
\ derivation of lessons learnt

Benchmark Experiments used AFLoNext:

- \ buffet flow control experiments conducted within the AVERT project (EU 5th Framework)
 - \ 2D airfoil experiments performed at VZLU
 - \ 3D half-model experiments performed at ONERA
- \ selected test case
 - \ transonic flow with/without buffet
- \ data for comparison
 - \ steady/unsteady pressure and aerodynamic coefficients

2D CFD simulation validation

3D CFD simulation validation

Design of Mini-TED devices for Buffet Control

 $0.2\% \le C_{\dot{m}} \le 0.8\%$

 $10^{\circ} \le \varphi \le 170^{\circ}$ (ref. = 90°)

90% $\leq \left(\frac{x}{c}\right)_{TE}^{slot} \leq 98\%$ (ref. = 94.5%)

 $0.1\% \le \frac{l_{slot}}{c} \le 0.5\%$ (ref. = 0.25%)

(ref. = 0.43%)

Design problem

- Design parameters object of investigation:
 - 1. Jet mass-flow rate coefficient:
 - 2. Jet inclination angle:
 - 3. Slot position:
 - 4. Slot size:
- BASELINE configuration has no blowing
- REFERENCE AFC is fluidic Gurney with reference (AVERT) values of design parameters, and C₁₁ = 1.12%.

(ρ_i,V_i)

1. Optimizations for maximum lift: objective = $C_1(\alpha=0.9^\circ) + C_1(\alpha=3.4^\circ)$

AIRFOIL T.E.

 $V_i sin(\varphi)$

2. Optimization for maximum lift-over-drag ratio (E): objective = $E(\alpha=0.9^\circ) + E(\alpha=3.4^\circ)$

Design of Mini-TED devices for Buffet Control

Optimization result

	REF-AFC	OPT-AFC		
		MAX-LIFT	MAX-EFFICIENCY	
MASS-FLOW RATE COEFFICIENT	0.43	0.37	0.30	%
JET INCLINATION ANGLE	90	124.5	85.5	deg
SLOT T.E. POSITION	94.5	97.7	92.5	% chord
SLOT SIZE	0.25	0.24	0.48	% chord

AoA = 1.9°

Scope of assessment study

- Wing design space investigated with AvIATE (rapid low order methodology)
- \ Single aisle use case.
- \ Wing planform constants: sweep, thickness, crank
- \ Wing planform variables: span, taper
- \ Study limited to aerodynamic buffet onset
- $\$ Wing span loadings are calculated assuming that the Centre of Lift remains constant for $\ C_L$ range of interest*.
- Assumes buffet is initiated when local sectional C₁ exceeds a specified value (function of Mach, sweep, thickness & design philosophy)

*Wing deformations tend to bring CoL inboard for increased CL, but for rigid wing analysis CoL migrates outboard for increased CL

AviATE Tool Adapted for Buffet Study

Plow control effectiveness from 2D simulations allows C_{1 buffet} to be increased $\Average C_{1 buffet} and area of wing requiring buffet suppression calculated to determine the mass flow the system must deliver.$

Potential of buffet onset AFC with const. wing area

Single aisle use case.

Mission fuel:

"(a)" 0.3g buffet margin

- "(b)" min. MTOW
- "(c)" min. mission fuel

\ 4.7% fuel saving if we can recover 0.15g÷0.2g margin to buffet

Taper

Buffet control mass flow requirements

Data received from 2D CFD simulations scaled to aircraft conditions
Wing planforms assessed need buffet delay up to DCI 0.15

Flow control mass flow scaled to aircraft conditions

April 2018

Potential benefits of buffet suppression flow control

- \ Mass flow & systems mass estimates integrated with AvIATE to derive mass 'snowball' effects
- Accounting for system mass system reduces the **fuel benefit** to **4.2%** for the design wing area.
- \ Largest flow control benefit from small highly loaded wings
- \ Benefit decreases rapidly with increased wing area
- \ Benefit of high span wings largely achieved with increased wing area

- \ CFD methods capable to predict buffet onset
- \ CFD methods capable to predict effect of AFC on buffet onset
- \ AFloNext experience: deviations in CFD smaller than uncertainties from experiment

Design of Mini-TED devices for Buffet Control

- \ lift increases are obtained with a smaller slot closer to the trailing edge; a lower mass-flow rate can be used if the jet inclination is increased beyond 90°
- \ efficiency increases are obtained with a larger slot more distant from the trailing edge, blowing with a lower mass-flow rate almost normally to the wing surface

Evaluation at Aircraft Level

- \ 4.2% mission fuel reduction by extending buffet margin on single-aisle aircraft size wing
- \ fuel reduction potential decreases with wing size

This project has received funding from the European Community's Seventh Framework Programme FP7/2007-2013, under grant agreement n° 604013, AFLoNext project.

