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Potential of Buffet Control
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Potential of Buffet Control

Buffet suppression activated
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Objectives

Predict the performance of different control devices
|dentify the most promising application (buffet control?)
Perform parametric study to find more efficient configurations

Optimisation w.r.t. a specific objective (max lift/efficiency?)
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Benchmark of CFD Simulation Capabilities

Prerequisite for design:
\ validated design environment
\ common baseline

Validation process:

\ definition of benchmark experiments for comparison
\ case studies by contributors

\ cross-comparison of results

\ derivation of lessons learnt
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Benchmark of CFD Simulation Capabilities

Benchmark Experiments used AFLoNext:

\ buffet flow control experiments conducted within the AVERT project (EU 5th
Framework)

\ 2D airfoil experiments performed at VZLU
\ 3D half-model experiments performed at ONERA

\ selected test case
\ transonic flow with/without buffet

\ data for comparison
\ steady/unsteady pressure and aerodynamic coefficients
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Benchmark of CFD Simulation Capabilities

2D CFD simulation validation
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Benchmark of CFD Simulation Capabilities

3D CFD simulation validation
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Design problem

= Design parameters object of investigation:

1. Jet mass-flow rate coefficient: 0.2% < (C,; £0.8% (ref. =0.43%)
2. Jetinclination angle: 10°< ¢ <170° (ref. =90°)
AIRFOIL T.E. 2\ slot
3. Slot position: 90% < (—) <98%  (ref. =94.5%)
| l ¢/ TE.
4. Slot size: P PeVi) 01% < % <0.5% (ref.=0.25%)

=  BASELINE configuration has no blowing
=  REFERENCE AFC is fluidic Gurney with reference (AVERT) values of design parameters,
and C, = 1.12%.

1. Optimizations for maximum lift: objective = C,(a=0.9°) + C,(0.=3.4°)

2. Optimization for maximum lift-over-drag ratio (E): objective = E(a=0.9°) + E(a=3.4°)



Design of Mini-TED devices for Buffet Control

Optimization result

OPT-AFC
REF-AFC
MAX-LIFT MAX-EFFICIENCY
MASS-FLOW RATE COEFFICIENT 0.43 0.37 0.30 %
JET INCLINATION ANGLE 90 1245 855 deg
SLOT T.E. POSITION 94.5 97.7 92.5 % chord
SLOT SIZE 0.25 0.24 0.48 % chord
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Evaluation at Aircraft Level

Scope of assessment study

\ Wing design space investigated with AVIATE
(rapid low order methodology)

\ Single aisle use case.
\ Wing planform constants: sweep, thickness,

crank AVIATE calibration against A320 w12
) ) (revision 32 “A320_input_file_v32.td") m
\ Wing planform variables: span, taper st ot s AN [ @
. . @ owe T j‘::"
\ Study limited to aerodynamic buffet onset & 1 6.0 ®
Fuel required » ,;\ — ’

\ Wing span loadings are calculated assuming o - =

that the Centre of Lift remains constant for C, | 9 ==

range of interest*. O o o
\ Assumes buffet is initiated when local sectional | g ==

C, exceeds a specified value (function of Mach,
sweep, thickness & design philosophy)

AVIATE Tool Adapted for Buffet Study

*Wing deformations tend to bring CoL inboard for increased CL, but for rigid wing analysis CoL migrates

outboard for increased CL
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Evaluation at Aircraft Level
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\Flow control effectiveness from 2D simulations allows C,, «. t0 be increased

\Average C, , #t @and area of wing requiring buffet suppression calculated to
determine the mass flow the system must deliver.
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Taper

Evaluation at Aircraft Level

Potential of buffet onset AFC with const. wing area

MTOW(kg) / | %,
Fuel (kg) / [ N N\l \...\
Buffet Margin (clean wing)

Single aisle use case.

Mission fuel:
“(a)” 0.3g buffet margin
“(b)” min. MTOW

“(c)” min. mission fuel

\ 4.7% fuel saving if we can
recover 0.15g+0.2g margin to
buffet
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Evaluation at Aircraft Level

Buffet control mass flow requirements
\ Data received from 2D CFD simulations scaled to aircraft conditions
\ Wing planforms assessed need buffet delay up to DCI 0.15

Flow control mass flow scaled to aircraft conditions
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Evaluation at Aircraft Level

Potential benefits of buffet suppression flow control

\ Mass flow & systems mass estimates integrated with AVIATE to derive mass ‘snowball’ effects
\ Accounting for system mass system reduces the fuel benefit to 4.2% for the design wing area.
\ Largest flow control benefit from small highly loaded wings

\ Benefit decreases rapidly with increased wing area

\ Benefit of high span wings largely achieved with increased wing area
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Lessons Learnt

Benchmark of CFD Simulation Capabilities

\ CFD methods capable to predict buffet onset

\ CFD methods capable to predict effect of AFC on buffet onset

\ AFloNext experience: deviations in CFD smaller than uncertainties from
experiment

Design of Mini-TED devices for Buffet Control

\ lift increases are obtained with a smaller slot closer to the trailing edge; a
lower mass-flow rate can be used if the jet inclination is increased beyond
90°

\ efficiency increases are obtained with a larger slot more distant from the
trailing edge, blowing with a lower mass-flow rate almost normally to the wing

surface
Evaluation at Aircraft Level

\ 4.2% mission fuel reduction by extending buffet margin on single-aisle
aircraft size wing

\ fuel reduction potential decreases with wing size
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